Add like
Add dislike
Add to saved papers

[Lipopolysaccharide promotes the proliferation of CD4(+) T cells by modulating the survive and cytokine secretion of dendritic cells].

Objective To explore the mechanism modulating the function of dendritic cells (DCs) and promoting the T cell response by lipopolysaccharide (LPS). Methods Splenic DCs were purified with anti-CD11c immunomagnetic beads. After DCs were stimulated with LPS, the expressions of co-stimulatory molecules CD80 and CD86 on the DCs were detected by flow cytometry. The protein levels of pro-inflammatory cytokines interleukin 4 (IL-4), IL-5, IL-6, IL-12p40, IL-12p70 and tumor necrosis factor alpha (TNF-α) in the culture supernatant were measured by ELISA. The apoptotic levels of DCs which were labeled with annexinV-FITC/PI were determined by flow cytometry. The phosphorylation level of nuclear factor κB P65 (NF-κB P65) was assessed by phos-flow. The mRNA levels of variable genes in microarray were determined by real-time PCR. The proliferation of CD4(+) T cells which were co-cultured with OVA323-329-treated DCs was analyzed by flow cytometry. Results The purity of DCs reached over 93% after isolation. LPS up-regulated the expressions of CD80 and CD86 and enhanced DCs-mediated proliferation of CD4(+) T cells. In addition, LPS increased the protein levels of IL-12p40, TNF-α and IL-6, and inhibited the apoptosis of DCs through the NF-κB signaling pathway. Conclusion LPS could enhance DC-mediated proliferation of CD4(+) T cells by modulating the DCs survival and cytokine secretion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app