Add like
Add dislike
Add to saved papers

[Polymerization of flowable composite core materials irradiated by super-high intensity light with short time].

PURPOSE: To evaluate the polymerization of dual-cured flowable composite core irradiated by super-high intensity light with short time.

METHODS: The light-proof silicon rubber cuboid mold with one end open was syringed and filled by dual-cured flowable resin composite core, then the open end of mold was irradiated directly by a light unit at 1000 mW/cm(2) ×10, ×20 s; or at 3200 mW/cm(2) × 3, ×6 s. The specimens were stored in the light-proof box. After irradiation for 1 h and 24 h, Knoop microhardness was measured along the vertical surfaces of specimens from 1mm to 10 mm depth at 1 mm interval. The data was analyzed by one-way ANOVA with SPSS 16.0 software package.

RESULTS: 3200 mW/cm(2) ×3 s light irradiation did not initiate light curing of the specimens. The other three light irradiations could make specimens obtaining higher microhardness than that by pure chemical cure; however, the depth of specimens affected by light irradiation was limited. Within the area affected by light, the microhardness of specimens could be improved by increasing the light irradiation time; after irradiation for 24 h, the microhardness of specimens had no difference between 3200 mW/cm(2) ×6 s and 1000 mW/cm(2) ×20 s light irradiation.

CONCLUSIONS: 3200 mW/cm(2) light intensity should be used for irradiation at least for 6 s, which could initiate light curing of flowable composite core to sufficient polymerization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app