Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

miRNA-187-3p-Mediated Regulation of the KCNK10/TREK-2 Potassium Channel in a Rat Epilepsy Model.

ACS Chemical Neuroscience 2016 November 17
Regulatory RNAs play a key role in the regulation of protein expression patterns in neurological diseases. Here we studied the regulation of miRNAs in a chronic rat model of temporal lobe epilepsy. The analysis was focused on a putative link with pharmacoresponsiveness as well as the functional implications of the regulation of a selected miRNA. The findings did not reveal a difference in hippocampal miRNA expression between phenobarbital responders and nonresponders. However, when comparing rats following status epilepticus with control rats we identified 13 differentially expressed miRNAs with miRNA-187-3p being most strongly regulated. mRNAs encoding KCNK10/TREK-2 as well as DYRK2 were confirmed as targets of miRNA-187-3p. Expression of the potassium channel protein KCNK10/TREK-2 negatively correlated with hippocampal miRNA-187-3p expression and proved to be upregulated in the chronic phase of the epilepsy model. In conclusion, our data do not suggest a relevant impact of miRNA expression patterns on pharmacoresponsiveness. However, we confirmed regulation of miRNA-187-3p and demonstrated that it impacts the expression of the two-pore domain potassium channel protein KCNK10/TREK-2. Considering evidence from brain ischemia models, KCNK10/TREK-2 upregulation might serve a protective function with a beneficial impact on astrocytic potassium and glutamate homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app