Add like
Add dislike
Add to saved papers

Functional in vitro tension measurements of fascial tissue - a novel modified superfusion approach.

INTRODUCTION: While two laboratory techniques are commonly used to assess the tensile properties of muscle tissue, emerging evidence suggests that the fascial components of these tissues also serve an active role in force generation. Hence, we investigated whether these techniques are sensitive for assessment of fascial micromechanics.

METHODS: Force measurements on dissected fascial tissue were performed either using the classical immersion organ bath or using an improved superfusion approach simulating pulsed pharmacological triggers. Rat deep dorsal fascial strips as well as rat testicular capsule were pharmacologically challenged either with mepyramine or oxytocin.

RESULTS: The classical immersion technique yielded a lower force response to mepyramine than the superfusion method (median: 367.4 vs. 555.4µN/mm(2)). Pause in irrigation before application reduced irregularities during bolus application. The superfusion approach was improved further by the following points: The high sensitivity of the superfusion method to bolus addition was voided by deviation of fluid supply during bolus addition.

CONCLUSION: Although both methods demonstrated pharmacologically induced contractile responses in lumbar fascia samples, the modified superfusion method may improve force registrations of slow contracting fascial tissue and minimize artefacts of fluid application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app