Add like
Add dislike
Add to saved papers

Photoinduced effects of m-tetrahydroxyphenylchlorin loaded lipid nanoemulsions on multicellular tumor spheroids.

BACKGROUND: Photosensitizers are used in photodynamic therapy (PDT) to destruct tumor cells, however, their limited solubility and specificity hampers routine use, which may be overcome by encapsulation. Several promising novel nanoparticulate drug carriers including liposomes, polymeric nanoparticles, metallic nanoparticles and lipid nanocomposites have been developed. However, many of them contain components that would not meet safety standards of regulatory bodies and due to difficulties of the manufacturing processes, reproducibility and scale up procedures these drugs may eventually not reach the clinics. Recently, we have designed a novel lipid nanostructured carrier, namely Lipidots, consisting of nontoxic and FDA approved ingredients as promising vehicle for the approved photosensitizer m-tetrahydroxyphenylchlorin (mTHPC).

RESULTS: In this study we tested Lipidots of two different sizes (50 and 120 nm) and assessed their photodynamic potential in 3-dimensional multicellular cancer spheroids. Microscopically, the intracellular accumulation kinetics of mTHPC were retarded after encapsulation. However, after activation mTHPC entrapped into 50 nm particles destroyed cancer spheroids as efficiently as the free drug. Cell death and gene expression studies provide evidence that encapsulation may lead to different cell killing modes in PDT.

CONCLUSIONS: Since ATP viability assays showed that the carriers were nontoxic and that encapsulation reduced dark toxicity of mTHPC we conclude that our 50 nm photosensitizer carriers may be beneficial for clinical PDT applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app