Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Photocatalytic decomposition behavior and reaction pathways of organic compounds using Cu nanoparticles synthesized via a green route.

The present article depicts a green, facile and environmentally friendly biosynthetic methodology for the fabrication of Cu nanoparticles (Cu NPs) using an aqueous extract of Anas platyrhynchos egg shells. This method is free from the use of any external reducing agents, stabilizing agents, solvents and templates. The Cu NPs were characterized by UV-Vis, TEM, SAED, FTIR, XRD and SEM-EDX. The synthesized Cu NPs were predominantly spherical in nature with an average size of 5-18 nm. The EDX pattern revealed the presence of elemental copper in the Cu NPs. The prepared NPs were used for the remediation of three carcinogenic dyes, namely, Rose Bengal (RB), Methylene Blue (MB) and Methyl Violet 6B (MV6B) from aqueous solution. Approximately, 98.2, 93 and 96% of RB, MB and MV6B dye were degraded within 165, 135 and 150 min, respectively, using the synthesized Cu NPs. To acquire an improved understanding of the mechanistic details of the degradation products, the intermediates were identified using LC-MS. It is assumed that fragmentation of the oxy group takes place for RB, while for MB and MV6B, N-demethylation and N-demethylenation of the substituent on the amine group takes place. It is believed that finally, the conjugated chromophoric structure undergoes cleavage to form the mineralization products. The probable mechanisms for the degradation of the dyes have been presented. The high efficiency of NPs as photocatalysts has opened a promising application for the removal of hazardous dyes from industrial effluents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app