Add like
Add dislike
Add to saved papers

MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3.

BACKGROUND: To investigate the role of total cellular microRNA (miRNA) in regulating epithelial-to-mesenchymal transition (EMT) during human endometrial endometrioid adenocarcinoma (EEC).

METHODS: A miRCURY LNA microRNA array was used to evaluate the miRNA profiles of human EEC tissues and corresponding nontumorous endometriums. An in vitro model of TGF-β induced EMT in HEC-1-A cells was used to investigate the role of miRNAs in the EEC during EMT. The expression of SMAD3, SMAD5, and a panel of EMT markers was detected by Western blot and quantitative PCR.

RESULTS: The results of miRNA profiling in human EEC tissues and corresponding nontumorous endometriums demonstrated that miR-23a expression was down-regulated. Using bioinformatics, we identified SMAD3 or SMAD5 maybe as a predicted target of miR-23a. The results of luciferase reporter assay showed miR-23a directly targets and down-regulates human SMAD3 protein levels, not SMAD5 protein levels. Furthermore, overexpression of miR-23a in HEC-1-A cells increased E-cadherin expression and decreased the expression of vimentin and alpha smooth muscle actin, markers of mesenchymal cellular phenotype.

CONCLUSIONS: Our data provide firm evidence of a role for miR-23a in the direct regulation of EMT through its targeting of SMAD3. Due to its ability to repress the EMT, miR-23a may be a novel target for EER therapeutic intervention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app