Add like
Add dislike
Add to saved papers

Melatonin promotes cardiomyogenesis of embryonic stem cells via inhibition of HIF-1α stabilization.

Melatonin, a molecule involved in the regulation of circadian rhythms, has protective effects against myocardial injuries. However, its capability to regulate the maturation of cardiac progenitor cells is unclear. Recently, several studies have shown that melatonin inhibits the stabilization of hypoxia-inducible factors (HIFs), important signaling molecules with cardioprotective effects. In this study, by employing differentiating mouse embryonic stem cells, we report that melatonin significantly upregulated the expression of cardiac cell-specific markers (myosin heavy chains six and seven) as well as the percentage of myosin heavy chain-positive cells. Importantly, melatonin decreased HIF-1α stabilization and transcriptional activity and, in contrast, induced HIF-2α stabilization. Interestingly, the deletion of HIF-1α completely inhibited the pro-cardiomyogenic effect of melatonin as well as the melatonin-mediated HIF-2α stabilization. Moreover, melatonin increased Sirt-1 levels in a HIF-1α-dependent manner. Taken together, we provide new evidence of a time-specific inhibition of HIF-1α stabilization as an essential feature of melatonin-induced cardiomyogenesis and unexpected different roles of HIF-1α stabilization during various stages of cardiac development. These results uncover new mechanisms underlying the maturation of cardiac progenitor cells and can help in the development of novel strategies for using melatonin in cardiac regeneration therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app