Add like
Add dislike
Add to saved papers

Rational design and engineering of a mutant variant of urate oxidase as a therapeutic enzyme: a molecular dynamics simulation approach.

BACKGROUND: Urate oxidase is absent in humans so the enzyme is considered as an important therapeutic agent to control hyperuricemic disorders. Currently available enzymes with pharmaceutical applications have adverse effects associated with allergic reactions and anaphylactic shocks, in case of chronic treatment. Therefore, developing variant forms of the enzyme, with lower immunogenicity and similar or higher activity, is of great importance.

AIM: Here, we tried to improve the structure of a recently resurrected ancestral mammalian urate oxidase (which is claimed to have higher enzymatic activity compared to other mammalian counterparts) by introducing eight rational mutations and verified the consequence of these mutations on immunogenicity, stability and the affinity of protein to uric acid by computational techniques.

METHODS: After modeling the full-length wild-type and mutant structures, structural dynamics were monitored through 20 ns and 50 ns of molecular dynamics simulation by GROMACS software package for the structures holding and lacking uric acid, respectively.

RESULTS: Simulation results implied maintenance of 3D arrangement, volume and compactness between wild-type and mutant structures. However residues of the mutated structure showed a higher tendency for hydrogen bond formation leading to a more stable and more soluble protein package with a higher surface area buried between protein chains. We also used the DiscoTope-2.0 server to map changes in immunogenicity index of 50 structures derived from the last 10ns of simulation.

CONCLUSION: Finally, this study suggests a urate oxidase mutant with improved overall stability, reduced immunogenicity and slightly lower affinity for uric acid compared to the resurrected ancestral mammalian urate oxidase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app