Add like
Add dislike
Add to saved papers

Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices.

INTRODUCTION: The objective of this paper was to identify the determining factors of the glottal prephonatory configuration from the point of view of the resulting muscular actions (i.e., arytenoids adduction, membranous vocal fold adduction, and tension).

MATERIALS AND METHODS: 21 human non-embalmed excised larynges (12 females and 9 males) were studied. Experiment A (11 larynges) studied four conditions of adduction of the vocal folds and arytenoids. Experiment B (10 larynges) studied the effect of cricothyroid approximation on the vocal fold length and the cricothyroid angle.

RESULTS: Experiment A: The mean glottal area significantly decreased from 41.2 mm(2) mean with no adduction, to 10.2 mm(2) mean with arytenoid adduction, to 9.2 mm(2) with membranous vocal fold adduction, and down to 1.1 mm(2) with the combination of arytenoid and membranous adduction. The effect of the task was statistically significant. Experiment B: The length of vocal folds increased from 13.61 mm median to 14.48 mm median, and the cricothyroid angle decreased of 10.05 median along with cricothyroid approximation.

DISCUSSION: The results of experiment A emphasize the sub-division of adductor intrinsic muscles in arytenoids adductors (i.e., LCA and IA), and membranous vocal fold adductor (i.e., TA). The results of experiment B quantify the effect of cricothyroid approximation on the vocal folds length. The implications of these results can be useful in both clinical practice and experimental studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app