Add like
Add dislike
Add to saved papers

Notch signaling modulates proliferative vitreoretinopathy via regulating retinal pigment epithelial-to-mesenchymal transition.

Elevated Notch signaling has been verified in a large range of fibrotic diseases developed in the kidney, liver, and lung, inducing the development of the epithelial-mesenchymal transition (EMT). The aim of this study was to observe the involvement of Notch signaling in the EMT of retinal pigment epithelial (RPE) cells and the pathogenesis of proliferative vitreoretinopathy (PVR). In vitro cultivated human RPE cells (ARPE-19) were treated with 10 ng/mL transforming growth factor (TGF)-β1 for 24, 48, and 72 h. The expression levels of ZO-1, α-SMA, vimentin, Notch1 intracellular domain (NICD1), and Hes-1 were evaluated with quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence staining or Western blot. TGF-β1 induced EMT and the activation of Notch signaling in ARPE-19 cells. To examine the effect of Notch inhibition on TGF-β1-induced EMT and PVR formation, ARPE-19 cells were preincubated with γ-secretase inhibitor LY411575 before TGF-β1 treatment. Mouse PVR model was used for in vivo study. ARPE-19 cells were injected intravitreously with or without the LY411575 to examine the effect of Notch inhibition on PVR formation. LY411575 significantly attenuated EMT by inhibiting the Notch signaling activation in vitro. PVR was induced by intravitreal injections of ARPE-19 cells, while LY411575 inhibited mouse PVR formation in vivo. Notch signaling plays a critical role in TGF-β1-induced EMT in vitro and mice PVR model, which provides a novel insight into the pathogenesis of PVR. The specific inhibition of Notch signaling by γ-secretase inhibitor may provide a new approach for the prevention of PVR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app