Add like
Add dislike
Add to saved papers

Implication of (18)F-fluorodeoxyglucose uptake by affected lymph nodes in cases with differentiated thyroid cancer.

In this study, we evaluated the usefulness of positron emission tomography using (18)F-fluorodeoxyglucose (FDG-PET) to detect metastatic lymph nodes in differentiated thyroid cancer. We also investigated whether certain factors, including the size of the metastasis to the lymph nodes, are associated with FDG avidity. A total of 22 consecutive patients with differentiated thyroid cancer who underwent FDG-PET preoperatively were enrolled in this study. Lymph node metastasis was diagnosed in the final pathology in 10 of the 22 patients (45.5%). The mean maximum standardized uptake value of the metastatic lymph nodes was 4.53 (range, 0-23.5). The 22 cases with differentiated thyroid cancer were divided into two groups based on lymph node metastasis. Clinicopathological variables other than FDG uptake of metastatic lymph nodes were not predictors of lymph node metastasis of thyroid cancer. The sensitivity, specificity, overall accuracy and false-negative rates of preoperative FDG-PET in the prediction of lymph node status were 40.0, 100, 72.7 and 60.0%, respectively. The false-positive rate of FDG-PET evaluation was 0%. The mean largest dimension of metastasis was 23.0 mm for FDG-positive cases and 10.9 mm for FDG-negative cases. There was a marked difference in the size of metastases between FDG-positive and -negative cases; however, even in patients with node metastasis >10 mm, the false-negative rate was 50.0%. Therefore, FDG-PET imaging was not found to be sufficient for the evaluation of lymph node status, particularly in cases with small metastases. Our findings indicate that preoperative FDG-PET evaluation of the lymph nodes cannot be considered predictive of the final pathology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app