Add like
Add dislike
Add to saved papers

MicroRNA-3666-induced suppression of SIRT7 inhibits the growth of non-small cell lung cancer cells.

Oncology Reports 2016 November
Sirtuin7 (SIRT7) plays an important role in many cancer types, but its function in non-small cell lung cancer (NSCLC) remains unclear. This study investigated the biological role and underlying mechanism of SIRT7 in NSCLC. Results showed that SIRT7 was highly expressed in NSCLC cell lines, as detected by real-time quantitative polymerase chain reaction and western blot analysis. SIRT7 knockdown by small interfering RNA (siRNA) significantly inhibited the growth of NSCLC cells and induced their apoptosis. Bioinformatics algorithms indicated that SIRT7 was a putative target of microRNA-3666 (miR-3666). Dual-luciferase reporter assay demonstrated that miR-3666 could target the 3'-untranslated region of SIRT7. Western blot analysis revealed that miR-3666 could regulate the protein expression of SIRT7. The miR-3666 overexpression significantly inhibited NSCLC cell growth. The restoration of SIRT7 protein expression significantly abrogated the effect of the miR-3666 overexpression. Moreover, SIRT7 depletion induced by siRNA or miR-3666 overexpression promoted the expression of pro-apoptotic genes. Taken together, our study suggests that SIRT7 functions as an oncogene in NSCLC, and miR-3666 can target SIRT7 to inhibit NSCLC cell growth by promoting the pro-apoptotic signaling pathway. Thus, this study provides novel insights into the development of new and potential treatments for NSCLC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app