JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly.

Liquid-liquid phase separation is responsible for formation of P granules, nucleoli, and other membraneless subcellular organelles composed of RNA and proteins. Efforts to understand the physical basis of liquid organelle formation have thus far focused on intrinsically disordered proteins (IDPs) as major components that dictate occurrence and properties. Here, we show that complex coacervates composed of low complexity RNA (polyuridylic acid, polyU) and short polyamines (spermine and spermidine) share many features of IDP-based coacervates. PolyU/polyamine coacervates compartmentalize biomolecules (peptides, oligonucleotides) in a sequence- and length-dependent manner. These solutes retain mobility within the coacervate droplets, as demonstrated by rapid recovery from photobleaching. Coacervation is reversible with changes in solution temperature due to changes in the polyU structure that impact its interactions with polyamines. We further demonstrate that lipid vesicles assemble at the droplet interface without impeding RNA entry/egress. These vesicles remain intact at the interface and can be released upon temperature-induced droplet dissolution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app