Add like
Add dislike
Add to saved papers

Structural, photolysis and biological studies of novel mixed metal Cu(I)-Sb(III) mixed ligand complexes.

Direct reaction of copper(I) halides with triphenylstibine (tpSb) and 2-mercapto-thiazolidine (tzdtH) in 1:1:1 molar ratio, results in the formation of the [CuX(μ2-S)-tzdtH)(tpSb)]2 (X=Cl (1), Br (2) and I (3)) complexes. The complexes have been characterized by melting point, FT-IR, UV-vis, (1)H NMR spectroscopic data and X-ray crystallography. Complexes 1-3 are di-nuclear and they are the first examples of mixed metals (CuSb), mixed ligand (thioamide, stibine and halogen) containing complexes. Two μ2-S (1-3) atoms bridge the two copper(I) ions with tetrahedral geometry. The coordination sphere around copper atoms is completed by one Sb from tpSb and one halogen (chlorine, bromine or iodine) atom. Intermolecular via N-H⋯X (Cl (1) and Br (2)) interactions stabilized the assembly. The short coppercopper bond distances of 3.103 (1), 3.061 (2) and 3.110, 3.108 (3) Ǻ found in 1-3 indicates d(10)-d(10) interaction between metal centers. The complexes exhibit high photo-sensitivity to UVB light. The complexes 1-3 and the already known [Cu(μ2-I)(tpSb)2]2 (4) were tested for their in vitro cytotoxic activity against human cancer cell lines: MCF-7 (breast, estrogen receptor (ER) positive), MDA-MB-231 (breast, estrogen receptor (ER) negative) and MRC-5 (normal human fetal lung fibroblast cells) with sulforhodamine B (SRB) colorimetric assay. Since estrogen receptors (ERs) are located in MCF-7, in contrast to MDA-MB-231 cells, the estrogenic effect of 1-4 on MCF-7 cells was studied by the mean of methylene blue assay. Compound 4 exhibits the highest estrogenic effect. None of 1-4 exceeds the activity of cisplatin against MCF-7 cells, but they are more active than cisplatin towards MDA-MB-231 cells. UVB light increases the effectiveness of complexes on MCF-7 cells which in the case of 4 is up to 28% higher than the corresponding initial complex (without irradiation).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app