Add like
Add dislike
Add to saved papers

High in vivo antitumor activity of cobalt oxoisoaporphine complexes by targeting G-quadruplex DNA, telomerase and disrupting mitochondrial functions.

Two G-quadruplex ligands: [Co(H-L(a))2Cl2] (Co1) and [Co(L(b))2][CoCl4]⋅2H2O (Co2) have been synthesized and characterized. Two cobalt oxoisoaporphine complexes exhibited selective cytotoxicity to SK-OV-3/DDP cells than for HL-7702 cells. Cytotoxic mechanism studies indicated that both Co1 and Co2 were telomerase inhibitor targeting c-myc, telomere, and bcl-2 G4s, and triggering cell senescence and apoptosis, which caused S phase arrest. They also induced mitochondrial dysfunction. The better antitumor activity of Co2, which should be correlated with a moiety of 2-[5-(2-pyridinyl)-1H-pyrrol-2-yl]pyridine in the L(b). Importantly, Co2 at high doses showed at least the same level of tumor growth inhibition efficacy compared to that of cisplatin, and better in vivo safety profile.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app