Add like
Add dislike
Add to saved papers

Ochratoxin A activates neutrophils and kills these cells through necrosis, an effect eliminated through its conversion into ochratoxin α.

Toxicology 2016 August 11
Ochratoxin A (OTA) is a mycotoxin produced by several species of fungi from the Aspergillus and Penicillium genera that frequently grow in improperly stored food products. OTA has carcinogenic, teratogenic and nephrotoxic potential and sustains a high half-life in human blood. Despite the recently efforts to decontaminate OTA through its conversion into its metabolite ochratoxin alpha (OTα), there are just a few reports in literature comparing the toxic effects of these toxins. Thus, herein we studied and compared the proinflammatory and toxicological effects of OTA and its metabolite OTα in human neutrophils in vitro. The effect of OTA and OTα on human neutrophils viability was evaluated by trypan blue, annexin-V and propidium iodide methods as well as by the analysis of cytomorphological alterations. The ATP levels were also evaluated using the luciferin-luciferase bioluminescence assay. The alteration on mitochondrial potential was assessed by a mitoscreen flow cytometry mitochondrial membrane potential detection kit and the intracellular calcium levels through the probe FLUO-4/AM. To study the human neutrophils' oxidative burst, the fluorescent probe dichlorodihydrofluorescein diacetate was used. OTA induced an increase on the intracellular calcium, human neutrophils' oxidative burst followed by depletion of ATP levels and alterations on mitochondrial potential leading to cell death by necrosis, while OTα did not induce significant toxic effects. Our results strongly suggest that the toxicity in human neutrophils induced by OTA started with the release of calcium from internal stores triggering several neutrophils' activities that culminate in cell death by necrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app