JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

p16 INK4A induces senescence and inhibits EMT through microRNA-141/microRNA-146b-5p-dependent repression of AUF1.

Senescence and epithelial-to-mesenchymal transition (EMT) processes are under the control of common tumor suppressor proteins, EMT transcription factors, and microRNAs. However, the molecular mechanisms that coordinate the functional link between senescence and EMT are still elusive. We have shown here that p16INK4A -related induction of senescence is mediated through miR-141 and miR-146b-5p. These two microRNAs are up-regulated in aging human fibroblast and epithelial cells. Furthermore, miR-141 and miR146b-5p trigger cell cycle arrest at G1 phase and induce senescence in primary human fibroblasts and breast cancer cells in the presence and absence of p16INK4A . Like p16INK4A -induced senescence, miR-141/miR146b-5p-related senescence is not associated with secretory phenotype, and is mediated through the RNA binding protein AUF1. We have further demonstrated that p16INK4A and its downstream miRNA targets inhibit EMT through suppressing the EMT inducer ZEB1 in an AUF1-dependent manner. Indeed, AUF1 binds the mRNA of this gene leading to increase in its level. These results indicate that p16INK4A controls both senescence and EMT through repressing EMT-related transcription factor via miR-141/miR146b-5p and their target AUF1. This sheds more light on the molecular basis of the tumor suppressive functions of p16INK4A , which represses both the proliferative and the migratory/invasive capacities of cells. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app