Add like
Add dislike
Add to saved papers

Ultrastructural investigation of the time-dependent relationship between breast cancer cells and thrombosis induction.

Micron 2016 November
Thromboembolic complications are a common cause of death in breast cancer patients. The in vivo relationship between coagulation factors and circulating tumours is a multifaceted one, with tumour cells implicated in thrombocytosis and platelets associated with coagulation-mediated metastasis. Platelets and fibrin networks are known to be morphologically altered in patients with cancer, and their relationship with breast cancer cells themselves may increase thrombosis susceptibility. This was investigated in vitro, assessing such morphological alterations through the establishment of a MCF-7 breast cancer cell co-culture system with blood plasma. Co-culture duration ranged from zero to thirty minutes, with five-minute intervals, in order to assess the time-dependent ultrastructural conformations of platelet and fibrin networks, using scanning electron microscopy. It was found that enhanced coagulability was related to co-culture duration. Changes in platelet and fibrin network morphology from normal were visible as early as five minutes in co-culture with MCF-7 cells. With longer co-culture duration thrombosis-linked variation in structural configuration was intensified, including advanced platelet aggregation and adherence characteristics, compression of fibrin networks into plaques of increased density, and upsurge of microparticulate extrusion implicated in amplifying procoagulant events during the metastatic process. These results confirm that cancer cells are stimulators of coagulation even in an in vitro system and breast cancer patients may become increasingly susceptible to thrombotic-related consequences with increased exposure to tumour cells, especially during metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app