Add like
Add dislike
Add to saved papers

Effect of the I/E ratio on CO2 removal during high-frequency oscillatory ventilation with volume guarantee in a neonatal animal model of RDS.

UNLABELLED: The objective of this study was to analyze the effect of I/E ratio on carbon dioxide (CO2) elimination during high-frequency oscillatory ventilation (HFOV) combined with volume guarantee (VG). Five 2-day-old piglets were studied before and after a bronchoalveolar lavage (BAL). The effect of an I/E ratio of 1:1 and 1:2 with (VG-ON) and without VG (VG-OFF) on PaCO2, as well as delta and mean airway pressures at the airway opening (∆Phf-ao, mPaw-ao) and at the tracheal level (∆Phf-t, mPaw-t) were evaluated at frequencies of 5, 8, 11, and 14 Hz. With the VG-ON, PaCO2 was significant lower with the I/E ratio of 1:2 at 5 Hz compared with the 1:1. mPaw-t was higher than mPaw-ao, with 1:1 I/E ratio, and on VG-ON, this difference was statistically significant.

CONCLUSION: "In this animal study and with this ventilator, the I/E ratio of 1:1 compared to 1:2 in HFOV and VG-ON did not produce a higher CO2 lavage as when HFOV was used without the VG modality. Even more, a lower PaCO2 was found when using the lower frequency and 1:2 ratio compared to 1:1. So in contrast to non-VG HFOV mode, using a fixed tidal volume, no significant changes on CO2 elimination are observed during HFOV when the I/E ratios of 1:1 and 1:2 are compared at different frequencies."

WHAT IS KNOWN: •The tidal volume on HFOV is determinant in CO 2 removal, and this is generated by delta pressure and the length of the inspiratory time. What is New: •HFOV combined with VG, an I/E ratio of 1:2 is more effective to remove CO 2 , and this is not related to the tidal volume.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app