Add like
Add dislike
Add to saved papers

Associations between micronutrient intakes and gut microbiota in a group of adults with cystic fibrosis.

Clinical Nutrition 2017 August
BACKGROUND: Cystic fibrosis (CF) involves chronic inflammation and oxidative stress affecting mainly the respiratory and digestive systems. Survival rates for CF have improved with advances in treatment including nutritional interventions such as micronutrient supplementation. Diet can modulate gut microbiota in the general population with consequences on local and systemic immunity, and inflammation. The gut microbiota appears disrupted and may associate with pulmonary status in CF. This study investigated associations between micronutrient intakes and gut microbiota variations in a group of adults with CF.

METHODS: Faecal microbiota of sixteen free-living adults with CF was profiled by 16ss rDNA sequencing on the GS-FLX platform. Associations were tested between UniFrac distances of faecal microbiota and time-corresponding micronutrient intakes. Associations between relative abundances of bacterial taxa and micronutrient intakes (those showing significant associations with UniFrac distances) were examined by Spearman correlation.

RESULTS: Unweighted UniFrac distances were associated with intakes of potassium and antioxidant vitamins C, E and beta-carotene equivalents, whereas weighted UniFrac distances were associated with antioxidant vitamins riboflavin, niacin equivalents, beta-carotene equivalents and vitamin A equivalents. Intakes of beta-carotene equivalents, vitamin C, vitamin E, niacin equivalents and riboflavin correlated negatively with Bacteroides and/or its corresponding higher level taxa. Intakes of beta-carotene equivalents and vitamin E also positively correlated with Firmicutes and specific taxa belonging to Firmicutes.

CONCLUSION: Some micronutrients, particularly antioxidant vitamins, correlated with gut microbiota variations in the studied cohort. Further research is required to clarify whether antioxidant vitamin intakes can influence CF gut microbiota and potential clinical/therapeutic implications in CF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app