Add like
Add dislike
Add to saved papers

Interleukin-4-Clicked Surfaces Drive M2 Macrophage Polarization.

Driving macrophage (Mϕ) polarization into the M2 phenotype provides potential against inflammatory diseases. Interleukin-4 (IL-4) promotes polarization into the M2-Mϕ phenotype, but its systemic use is constrained by dose-limiting toxicity. Consequently, we developed IL-4-decorated surfaces aiming at sustained and localized activity. IL-4 muteins were generated by genetic code expansion; Lys42 was replaced by unnatural amino acids (uAAs). Both muteins showed cell-stimulation ability and binding affinity to IL4Rα similar to those of wt-IL-4. Copper-catalyzed (CuAAC) and copper-free strain-promoted (SPAAC) 1,3-dipolar azide-alkyne cycloadditions were used to site-selectively anchor IL-4 to agarose surfaces. These surfaces had sustained IL-4 activity, as demonstrated by TF-1 cell proliferation and M2, but not M1, polarization of M-CSF-generated human Mϕ. The approach provides a blueprint for the engineering of cytokine-activated surfaces profiled for sustained and spatially controlled activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app