Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MRI as Primary End Point for Pharmacologic Experiments of Liver Regeneration in a Murine Model of Partial Hepatectomy.

Academic Radiology 2016 November
RATIONALE AND OBJECTIVES: The study aimed to validate magnetic resonance imaging (MRI)-based liver volumetry as a quantitative measure of hepatic regeneration in mice subjected to partial hepatectomy, in view of routine in vivo pharmacologic studies characterizing compounds aiming to accelerate liver regeneration.

MATERIALS AND METHODS: Partial hepatectomy was performed in male B6 mice (n = 47). Images were acquired in 14.5 minutes from anesthetized and spontaneously respiring animals, without any gating and without administration of contrast material. Some of the mice (n = 6) were treated with 1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene (TCPOBOP), a synthetic agonist of mouse constitutive androstane receptor, or with the corresponding vehicle (n = 6). Postmortem analyses included total liver weight and histologic Ki67 expression.

RESULTS: A highly significant correlation (R = 0.98, P = 1.5 × 10-14 ) was obtained between the MRI-derived liver volumes and the postmortem liver weights in hepatectomized, untreated mice. MRI reliably monitored enhanced murine liver regrowth following treatment with TCPOBOP, as confirmed by comparative hepatocyte proliferation (Ki67 expression) and liver weight analysis (R = 0.96, P = 2 × 10-6 ).

CONCLUSIONS: MRI-based monitoring of liver regrowth in mice without the requirement of euthanizing animals at several time points has been established. In comparison to terminal procedures, the number of hepatectomized mice needed to derive a liver (re)growth curve was reduced by a factor of 6. The feasibility of using this imaging approach in pharmacologic studies in the context of liver regeneration has been demonstrated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app