Add like
Add dislike
Add to saved papers

Directing cellular information flow via CRISPR signal conductors.

Nature Methods 2016 November
The complex phenotypes of eukaryotic cells are controlled by decision-making circuits and signaling pathways. A key obstacle to implementing artificial connections in signaling networks has been the lack of synthetic devices for efficient sensing, processing and control of biological signals. By extending sgRNAs to include modified riboswitches that recognize specific signals, we can create CRISPR-Cas9-based 'signal conductors' that regulate transcription of endogenous genes in response to external or internal signals of interest. These devices can be used to construct all the basic types of Boolean logic gates that perform logical signal operations in mammalian cells without needing the layering of multiple genetic circuits. They can also be used to rewire cellular signaling events by constructing synthetic links that couple different signaling pathways. Moreover, this approach can be applied to redirect oncogenic signal transduction by controlling simultaneous bidirectional (ON-OFF) gene transcriptions, thus enabling reprogramming of the fate of cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app