JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Rational Manipulation of DNA Methylation by Using Isotopically Reinforced Cytosine.

The human DNA methyltransferase 3A (DNMT 3A) is responsible for de novo epigenetic regulation, which is essential for mammalian viability and implicated in diverse diseases. All DNA cytosine C5 methyltransferases follow a broadly conserved catalytic mechanism. We investigated whether C5 β-elimination contributes to the rate-limiting step in catalysis by DNMT3A and the bacterial M.HhaI by using deuterium substitutions of C5 and C6 hydrogens. This substitution caused a 1.59-1.83 fold change in the rate of catalysis, thus suggesting that β-elimination is partly rate-limiting for both enzymes. We used a multisite substrate to explore the consequences of slowing β-elimination during multiple cycles of catalysis. Processive catalysis was slower for both enzymes, and deuterium substitution resulted in DNMT 3A dissociating from its substrate. The decrease in DNA methylation rate by DNMT 3A provides the basis of our ongoing efforts to alter cellular DNA methylation levels without the toxicity of currently used methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app