Add like
Add dislike
Add to saved papers

A Heterodimeric Cytokine, Consisting of IL-17A and IL-17F, Promotes Migration and Capillary-Like Tube Formation of Human Vascular Endothelial Cells.

The interleukin (IL)-17 family, consisting of six homodimeric cytokines IL-17A, IL-17B, IL-17C, IL-17D, IL-17E/IL-25, and IL-17F, mediates a variety of biological activities including regulation of chemokine secretion and angiogenesis. Among the IL-17 family members, IL-17A and IL-17E/IL-25 are angiogenesis stimulators, while IL-17B and IL-17F are angiogenesis inhibitors. Recently, IL-17A/F heterodimer, comprised of the IL-17A and IL-17F subunits, was found as another member of the IL-17 cytokine family. However, to date, it has been unknown whether IL-17A/F has biological actions to affect the angiogenesis-related vascular endothelial functions. Therefore, in this study, we investigated the biological effects of IL-17A/F on the growth, migration and capillary-like tube formation of vascular endothelial cells. Recombinant IL-17A/F protein had no direct effects on the growth of human dermal microvascular endothelial cells (HMVECs), whereas, after 4-hour incubation in a modified Boyden Chemotaxicell chamber, IL-17A/F significantly induced migration of HMVECs over a wide range of doses via the phosphatidylinositol-3 kinase (PI3K) signaling pathway. We further investigated the biological effect of IL-17A/F on capillary-like tube formation using a co-culture system of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs), which mimicked the in vivo microenvironment. In this co-culture system, IL-17A/F significantly promoted capillary-like endothelial tube formation in a dose-dependent fashion via the PI3K and extracellular signal-regulated kinase (ERK) signaling pathways. Additionally, IL-17A/F up-regulated secretion of angiogenic growth factors such as IL-8 and growth-related oncogene (GRO)-α by HDFs. These findings identify a novel biological function for IL-17A/F as an indirect angiogenic agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app