Add like
Add dislike
Add to saved papers

Synthesis and bioactivities of halogen bearing phenolic chalcones and their corresponding bis Mannich bases.

Phenolic bis Mannich bases having the chemical structure of 1-[3,5-bis-aminomethyl-4-hydroxyphenyl]-3-(4-halogenophenyl)-2-propen-1-ones (1a-c, 2a-c, 3a-c) were synthesized (Numbers 1, 2, and 3 represent fluorine, chlorine, and bromine bearing compounds, respectively, while a, b, and c letters represent the compounds having piperidine, morpholine, and N-methyl piperazine) and their cytotoxic and carbonic anhydrase (CA, EC 4.2.1.1) enzyme inhibitory effects were evaluated. Lead compounds should possess both marked cytotoxic potencies and selective toxicity for tumors. To reflect this potency, PSE values of the compounds were calculated. According to PSE values, the compounds 2b and 3b may serve as lead molecules for further anticancer drug candidate developments. Although the compounds showed a low inhibition potency toward hCA I (25-43%) and hCA II (6-25%) isoforms at 10 μM concentration of inhibitor, the compounds were more selective (1.5-5.2 times) toward hCA I isoenzyme. It seems that the compounds need molecular modifications for the development of better CA inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app