Add like
Add dislike
Add to saved papers

Giant Cellular Vacuoles Induced by Rare Earth Oxide Nanoparticles are Abnormally Enlarged Endo/Lysosomes and Promote mTOR-Dependent TFEB Nucleus Translocation.

Small 2016 November
Many nanomaterials are reported to disrupt lysosomal function and homeostasis, but how cells sense and then respond to nanomaterial-elicited lysosome stress is poorly understood. Nucleus translocation of transcription factor EB (TFEB) plays critical roles in lysosome biogenesis following lysosome stress induced by starvation. The authors previously reported massive cellular vacuolization, along with autophagy induction, in cells treated with rare earth oxide (REO) nanoparticles. Here, the authors identify these giant cellular vacuoles as abnormally enlarged and alkalinized endo/lysosomes whose formation is dependent on macropinocytosis. This vacuolization causes deactivation of mammalian target of rapamycin (mTOR), a TFEB-interacting kinase that resides on the lysosome membrane. Subsequently, TFEB is dephosphorylated at serine 142 and translocated into cell nucleus. This nucleus translocation of TFEB is observed only in vacuolated cells and it is critical for maintaining lysosome homeostasis after REO nanoparticle treatment, as knock-down of TFEB gene significantly compromises lysosome function and enhances cell death in nanoparticle-treated cells. Our results reveal that cellular vacuolization, which is commonly observed in cells treated with REOs and other nanomaterials, represents a condition of profound lysosome stress, and cells sense and respond to this stress by facilitating mTOR-dependent TFEB nucleus translocation in an effort to restore lysosome homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app