JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Establishing Porosity Gradients within Metal-Organic Frameworks Using Partial Postsynthetic Ligand Exchange.

Crystalline 3-D materials bearing interlinked domains of differential porosity and functionality offer the potential for organizing and shuttling molecular and nanoscale matter to specific locations within 3-D space. Here, we present methods for creating prototype MOF materials that have such structural features. Specifically, the process of pore expansion via ligand exchange was studied for an isoreticular series of mesoporous MOFs based on bMOF-100. It was found that pore expansion occurs incrementally in small steps and that it proceeds gradually in an "outside→in" fashion within individual crystals. The ligand exchange reaction can be terminated prior to complete crystal conversion to yield intermediate product MOFs, denoted bMOF-100/102 and bMOF-102/106, which bear descending porosity gradients from the crystal periphery to the crystal core. As a proof of concept, size-sensitive incorporation of a gold-thiolate nanocluster, Au133(SR)52, selectively in the bMOF-102/106 crystal periphery region was accomplished via cation exchange. These new methods open up the possibility of controlling molecular organization and transport within porous MOF materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app