Add like
Add dislike
Add to saved papers

Usefulness of layer-specific strain for identifying complex CAD and predicting the severity of coronary lesions in patients with non-ST-segment elevation acute coronary syndrome: Compared with Syntax score.

BACKGROUND: Layer-specific strain allows the assessment of the function of every layer of myocardium.

OBJECTIVES: To evaluate the changes of non-ST-segment elevation acute coronary syndrome(NSTE-ACS) patients with and without complex coronary artery disease(CAD) by layer-specific strain and determine if myocardial strain can identify complex CAD and assess the severity of coronary lesions as defined by Syntax score (SS).

METHODS: A total of 139 patients undergoing coronary angiography due to suspected NSTE-ACS were prospectively enrolled. Echocardiography was performed 1h before angiography. Global longitudinal strain (GLS), territorial longitudinal strain (TLS), global circumferential strain (GCS) and territorial circumferential strain (TCS) of the three layers of LV wall were assessed by two-dimensional (2D) speckle tracking echocardiography (STE) with layer-specific myocardial deformation quantitative analysis based on the perfusion territories of the three major coronary arteries in an 18-segment model of LV. SS was used for predicting the severity of coronary lesions in patients with complex CAD.

RESULTS: 78 had complex CAD, 32 had 1- or 2-vessel disease and 29 had no significant coronary stenosis confirmed by coronary angiography. According to SS value, 78 complex CAD subjects were subdivided into three groups, 24 in group SS1 (SS≤22), 26 in group SS2 (SS 23-32) and 28 in group SS3 (SS≥33). Compared to the other two groups without complex CAD, patients with NSTE-ACS due to complex CAD had worse function in all 3 myocardial layers assessed by GLS, TLS, GCS and TCS. Endocardial GLS and TLS (all, P<0.01) were most affected. The absolute differences between endocardial and epicardial GLS and TLS were lower in magnitude in patients with complex CAD than in those without (all, P<0.001), and the more complex of coronary lesion, the lower magnitude of the parameters(all, P<0.001). Endocardial GLS and TLS were closely correlated with SS value(r=-0.751 and r=-0.753, respectively; P<0.001). By receiver-operating characteristic curve analysis, endocardial GLS and TLS demonstrated the highest area under curve, showing better diagnostic accuracy (endocardial GLS: value<-21.35% had 72% sensitivity, 84% specificity and area under the curve ¼0.846; endocardial TLS: value<-20.15% had 72% sensitivity, 88% specificity and area under the curve ¼0.852) than GCS, TCS, mid-myocardial and epicardial GLS, and TLS(all, P<0.05).

CONCLUSIONS: Strains, particularly endocardial GLS and TLS measurement by 2DSTE might enable a non-invasive method to identify complex CAD and predict the severity of coronary lesions in patients with NSTE-ACS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app