Add like
Add dislike
Add to saved papers

Combination of hollow fiber liquid phase microextraction followed by HPLC-DAD and multivariate curve resolution to determine antibacterial residues in foods of animal origin.

Talanta 2016 November 2
In the present research, a carrier mediated hollow fiber based liquid-phase microextraction approach (HF-LPME) prior to high performance liquid chromatography-diode array detection (HPLC-DAD) was developed for the simultaneous determination of the antibacterial residues of four tetracyclines (TCs) and five quinolones (QNs), which are commonly used as veterinary medicines. In order to obtain high extraction efficiency, the parameters affecting HF-LPME were optimized using a three-factor and three-level Box-Behnken design under response surface methodology. This method was validated according to the recommendations of the Food and Drug Administration (FDA), and, for the first time, successfully applied to a wide range of animal source food samples such as fish, milk, and honey as well as the liver and muscles of lamb and chicken. Analytical performance was determined in terms of linearity, intra- and inter-assay precision, detection and quantification limits, matrix effect, accuracy, and drug stability in real samples. Detection and quantitation limits for the different antibiotics ranged between 0.5-20ngg(-1) and 1.25-40ngg(-1), respectively. Intra and inter-day repeatability, expressed as the relative standard deviation, were in the ranges of 3.4-10.7% and 5.0-11.5%, respectively. The procedure allows good preconcentration factors of 175-700. The results of the validation process proved that the method is suitable for determining TCs and QNs residues in surveillance programs. Finally, the applicability of the proposed method was successfully confirmed by the extraction and determination of nine antibiotics in various animal source food samples. The importance of this methodology relies on the combination of HF-LPME/HPLC-DAD second-order data with multivariate curve resolution-alternative least squares (MCR-ALS) algorithm, which improves the resolution of some overlapped chromatograms and, hence, increases the accuracy and repeatability of drug determination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app