Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Featured Article: Modulation of fetal hemoglobin in hereditary persistence of fetal hemoglobin deletion type-2, compared to Sicilian δβ-thalassemia, by BCL11A and SOX6-targeting microRNAs.

Hereditary persistence of fetal hemoglobin deletion type-2 (HPFH-2) and Sicilian-δβ-thalassemia are conditions described as large deletions of the human β-like globin cluster, with absent β-globin chains and a compensatory variable increase in γ-globin. HPFH, in general, may be distinguished from DB-Thalassemia by higher fetal hemoglobin (HbF) levels, absence of anemia and hypochromic and microcytic erythrocytes. MicroRNAs (miRNAs) regulate a range of cellular processes including erythropoiesis and regulation of transcription factors such as the BCL11A and SOX6 genes, which are related to the regulation of γ-globin expression. In this report, a possible association among the overexpression of miRNAs and the expression of the γ-globin gene was analyzed in these two conditions. Forty-nine differentially expressed miRNAs were identified by microarrays in CD34+-derived erythroid cells of two subjects heterozygous for Sicilian-δβ-thalassemia, 2 for HPFH-2 and 3 for controls after 13 days of culture. Some of these miRNAs may participate in γ-globin gene regulation and red blood cell function. The BCL11A gene was found to be potentially targeted by 12 miRNAs that were up-regulated in HPFH-2 or in DB-Thal. A down-regulation of BCL11A gene expression in HPFH-2 was verified by quantitative polymerase chain reaction. These data suggest an important action for miRNA that may partially explain the phenotypic differences between HPFH-2 and Sicilian δβ-thalassemia and the increased expression of γ-globin in these conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app