Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Therapeutic nuclear shuttling of YB-1 reduces renal damage and fibrosis.

Kidney International 2016 December
Virtually all chronic kidney diseases progress towards tubulointerstitial fibrosis. In vitro, Y-box protein-1 (YB-1) acts as a central regulator of gene transcription and translation of several fibrosis-related genes. However, it remains to be determined whether its pro- or antifibrotic propensities prevail in disease. Therefore, we investigated the outcome of mice with half-maximal YB-1 expression in a model of renal fibrosis induced by unilateral ureteral obstruction. Yb1+/- animals displayed markedly reduced tubular injury, immune cell infiltration and renal fibrosis following ureteral obstruction. The increase in renal YB-1 was limited to a YB-1 variant nonphosphorylated at serine 102 but phosphorylated at tyrosine 99. During ureteral obstruction, YB-1 localized to the cytoplasm, directly stabilizing Col1a1 mRNA, thus promoting fibrosis. Conversely, the therapeutic forced nuclear compartmentalization of phosphorylated YB-1 by the small molecule HSc025 mediated repression of the Col1a1 promoter and attenuated fibrosis following ureteral obstruction. Blunting of these effects in Yb1+/- mice confirmed involvement of YB-1. HSc025 even reduced tubulointerstitial damage when applied at later time points during maximum renal damage. Thus, phosphorylation and subcellular localization of YB-1 determines its effect on renal fibrosis in vivo. Hence, induced nuclear YB-1 shuttling may be a novel antifibrotic treatment strategy in renal diseases with the potential of damage reversal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app