Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Synthetic Lethality in PTEN-Mutant Prostate Cancer Is Induced by Combinatorial PI3K/Akt and BCL-XL Inhibition.

The bone-conserved metastatic phenotype of prostate cancer is a prototype of nonrandom metastatic behavior. Adhesion of prostate cancer cells to fibronectin via the integrin α5 (ITGA5) has been proposed as a candidate bone marrow niche localization mechanism. We hypothesized that the mechanisms whereby ITGA5 regulates the adhesion-mediated survival of prostate cancer cells will define novel therapeutic approaches. ITGA5 shRNA reduced expression of BCL-2 family members and induced apoptosis in PC-3 cells. In these PTEN-mutant cells, pharmacologic inhibition of the PI3K signaling pathway in combination with ITGA5 knockdown enhanced apoptosis. Chemical parsing studies with BH3 mimetics indicated that PI3K/Akt inhibition in combination with BCL-XL -specific inhibition induces synergistic apoptosis specifically in PTEN-mutant prostate cancer cells, whereas single-agent PI3K/Akt inhibitors did not. Given the importance of PTEN loss in the progression of prostate and other cancers, synthetic lethality induced by combinatorial PI3K/Akt and BCL-XL inhibition represents a valuable therapeutic strategy.

IMPLICATIONS: Activation of the PI3K pathway through PTEN loss represents a major molecular pathway in the progression of prostate and other cancers. This study defines a synthetic lethal therapeutic combination with significant translational potential.

OVERVIEW: Synthetic lethality in PTEN-mutant prostate cancer cells with combined PI3K/Akt and BCL-XL inhibition. PTEN-mutant prostate cancer cells expressing ITGA5 bind to fibronectin in the putative bone marrow niche and transduce survival signals to BCL-XL Additional PTEN-regulated signals independent of the PI3K/Akt pathway likely feed into the BCL-XL -regulated survival program to explain synthetic lethality observed with the combination.Visual Overview: https://mcr.aacrjournals.org/content/early/2016/12/02/1541-7786.MCR-16-0202/F1.large.jpg. Mol Cancer Res; 14(12); 1176-81. ©2016 AACR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app