Add like
Add dislike
Add to saved papers

C1q/TNF-related protein 3 expression and effects on adipocyte differentiation of 3T3-L1 cells.

Adipose tissue-derived adipokines influence a number of organs critical for energy homeostasis and metabolism. One of the most extensively studied adipokines is adiponectin, which exerts anti-diabetic, anti-inflammatory, and anti-atherogenic functions on various cell types. CTRP3, a paralog of adiponectin, is a member of the C1q and tumor necrosis factor-related protein (CTRP) superfamily. CTRP3 reduces hepatic triglyceride levels in diet-induced obese (DIO) mice. However, the physiological role of CTRP3 in adipocytes is largely unknown. In the course of our investigation of expression profiles of CTRPs during adipocyte differentiation, we found that CTRP3 expression pattern is different from that previously reported. Therefore, we examined the effect of CTRP3 on adipogenesis using 3T3-L1 cells. The expression level of CTRP3 was markedly decreased during the differentiation of 3T3-L1 cells. Recombinant CTRP3 (rCTRP3) treatment significantly reduced intracellular lipid content and decreased expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein alpha (C/EBPα), adiponectin, and fatty acid binding protein 4 (FABP4) in 3T3-L1 cells. Furthermore, rCTRP3 induced the phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and Akt in differentiated 3T3-L1 adipocytes. These results suggest that CTRP3 may negatively regulate lipid metabolism during adipocyte differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app