Add like
Add dislike
Add to saved papers

Special AT-rich Sequence-binding Protein 1 (SATB1) Functions as an Accessory Factor in Base Excision Repair.

Base excision repair is initiated by DNA glycosylases that recognize specific altered bases. DNA glycosylases for oxidized bases carry both a glycosylase activity that removes the faulty base and an apyrimidinic/apurinic lyase activity that introduces a single-strand DNA incision. In particular, the CUT domains within the CUX1 and CUX2 proteins were recently shown to interact with the 8-oxoguanine (8-oxoG) DNA glycosylase and stimulate its enzymatic activities. SATB1, which contains two CUT domains, was originally characterized as a T cell-specific genome organizer whose aberrant overexpression in breast cancer can promote tumor progression. Here we investigated the involvement of SATB1 in DNA repair. SATB1 knockdown caused a delay in DNA repair following exposure to H2O2, an increase in OGG1-sensitive oxidized bases within genomic DNA, and a decrease in 8-oxoG cleavage activity in cell extracts. In parallel, we observed an increase in phospho-CHK1 and γ-H2AX levels and a decrease in DNA synthesis. Conversely, ectopic expression of SATB1 accelerated DNA repair and reduced the levels of oxidized bases in genomic DNA. Moreover, an enhanced GFP-SATB1 fusion protein was rapidly recruited to laser microirradiation-induced DNA damage. Using purified proteins, we showed that SATB1 interacts directly with OGG1, increases its binding to 8-oxoG-containing DNA, promotes Schiff base formation, and stimulates its glycosylase and apyrimidinic/apurinic lyase enzymatic activities. Structure/function analysis demonstrated that CUT domains, but not the homeodomain, are responsible for the stimulation of OGG1. Together, these results identify another CUT domain protein that functions both as a transcription factor and an accessory factor in base excision repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app