Add like
Add dislike
Add to saved papers

Differential effects of contractile potentiators on action potential-induced Ca 2+ transients of frog and mouse skeletal muscle fibres.

Muscle fibres, isolated from frog tibialis anterior and mouse flexor digitorum brevis (FDB) were loaded with the fast dye MagFluo-4 to study the effects of potentiators caffeine, nitrate, Zn2+ and perchlorate on Ca2+ transients elicited by single action potentials. Overall, the potentiators doubled the transients amplitude and prolonged by about 1.5-fold their decay time. In contrast, as shown here for the first time, nitrate and Zn2+ , but not caffeine, activated a late, secondary component of the transient rising phase of frog but not mouse, fibres. The rise time was increased from 1.9 ms in normal solution (NR) to 3.3 ms (nitrate) and 4.4 ms (Zn2+ ). In NR, a single exponential, fitted the rising phase of calcium transients of frog (τ1  = 0.47 ms) and mouse (τ1  = 0.28 ms). In nitrate and Zn2+ only frog transients showed a secondary exponential component, τ2  = 0.72 ms (nitrate) and 0.94 ms, (Zn2+) . We suggest that nitrate and Zn2+ activate a late slower component of the ΔF/F signals of frog but not of mouse fibres, possibly promoting Ca2+ induced Ca2+ release at level of the RyR3, that in frog muscle fibres are localized in the para-junctional region of the triads and are absent in mouse FDB muscle fibres.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app