Add like
Add dislike
Add to saved papers

Steered molecular dynamics analysis of the role of cofilin in increasing the flexibility of actin filaments.

Biophysical Chemistry 2016 November
Cofilin is one of the most essential regulatory proteins and participates in the process of disassembling actin filaments. Cofilin induces conformational changes to actin filaments, and both the bending and torsional rigidity of the filament. In this study, we investigate the effects of cofilin on the mechanical properties of actin filaments using computational methods. Three models defined by their number of bound cofilins are constructed using coarse-grained MARTINI force field, and they are then extended with steered molecular dynamics simulation. After obtaining the stress-strain curves of the models, we calculate their Young's moduli and other mechanical properties that have not yet been determined for actin filaments. We analyze the cause of the different behaviors of the three models based on their atomistic geometrical differences. Finally, it is demonstrated that cofilin binding causes changes in the distances, angles, and stabilities of the residues in actin filaments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app