Add like
Add dislike
Add to saved papers

Perturbation of the molecular clockwork in the SCN of non-obese diabetic mice prior to diabetes onset.

Circadian disruption is associated with the development of diabetes. Non-obese diabetic (NOD) mice show abnormal diurnal profiles in energy balance and locomotor activity suggesting circadian misalignment. Therefore, we analyzed cFos and mPER1 as markers for rhythmic neuronal activity within the suprachiasmatic nucleus (SCN) of wildtype (WT) and non-diabetic (nNOD) as well as acutely diabetic NOD (dNOD) mice. cFos levels show a day/night difference in both WT and nNOD but not in dNOD. mPER1 levels did not show a day/night difference in both nNOD and dNOD. This suggests that disruption of SCN rhythmicity in NOD mice precedes the actual onset of diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app