Add like
Add dislike
Add to saved papers

Overexpression of TAZ promotes cell proliferation, migration and epithelial-mesenchymal transition in ovarian cancer.

Oncology Letters 2016 September
The Hippo pathway is dysregulated in multiple types of human cancer, including ovarian cancer. Nuclear expression of yes-associated protein 1 (YAP1), a downstream transcription coactivator of the Hippo pathway, has been demonstrated to promote tumorigenesis in ovarian cancer and may serve as a poor prognostic indicator. However, transcriptional coactivator with PDZ binding motif (TAZ), a downstream target of the Hippo pathway and paralog of YAP in mammalian cells, has not been fully investigated in ovarian cancer. The present study aimed to investigate the dysregulation and biological function of TAZ in ovarian cancer. Reverse transcription-quantitative polymerase chain reaction and western blotting revealed that TAZ mRNA and protein levels, respectively, were upregulated in ovarian cancer, and a meta-analysis of ovarian cancer microarray datasets identified that increased expression of TAZ mRNA is correlated with poor prognosis in patients with ovarian cancer. In addition, TAZ-knockdown in ovarian cancer cells demonstrated that TAZ regulates the migration, proliferation and epithelial-mesenchymal transition of ovarian cancer cells. Furthermore, pharmacological disruption of the YAP/TAZ/TEA domain protein complex resulted in a decrease in ovarian cancer cell migration, proliferation and vimentin expression. The results of the present study indicate that the overexpression of TAZ is important in the development and progression of ovarian cancer, and may function as a potential drug target for treatment of this disease entity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app