Add like
Add dislike
Add to saved papers

G-CSF and hypoxic conditioning improve the proliferation, neural differentiation and migration of canine bone marrow mesenchymal stem cells.

Transplantation using bone marrow mesenchymal stem cells (BMSCs) is emerging as a potential regenerative therapy after ischemic attacks in the brain. However, it has been questioned because very few transplanted BMSCs are detected homing to and survived in the ischemic region. Improving the cell viability and migration ability under the complex ischemic condition seems very important. The aim of our study is to identify whether hypoxic condition and granulocyte colony-stimulating factor (G-CSF) could improve the cell survival and migration ability of transplanted cells or hypoxic condition could promote BMSC's neural differentiation. BMSCs were treated under either normoxic (21% O2) or hypoxic (1% O2) (HP-BMSCs) conditions, no significant apoptosis was observed in hypoxic precondition (HP) group, our study confirmed that HP improves BMSCs proliferation and migration. Meanwhile, neural induction of BMSCs under hypoxic condition exhibited significant superior results than normoxic condition. Additionally, the addition of G-CSF in HP-BMSCs culture media promoted HP efficiency on BMSCs. These findings shed light on novel efficient strategy on the prosperity of BMSCs. Hypoxic preconditioning and cultured with G-CSF may become a promising therapeutics for cell-based therapy in the treatments of ischemia stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app