Add like
Add dislike
Add to saved papers

Athletic training affects the uniformity of muscle and tendon adaptation during adolescence.

With the double stimulus of mechanical loading and maturation acting on the muscle-tendon unit, adolescent athletes might be at increased risk of developing imbalances of muscle strength and tendon mechanical properties. This longitudinal study aims to provide detailed information on how athletic training affects the time course of muscle-tendon adaptation during adolescence. In 12 adolescent elite athletes (A) and 8 similar-aged controls (C), knee extensor muscle strength and patellar tendon mechanical properties were measured over 1 yr in 3-mo intervals. A linear mixed-effects model was used to analyze time-dependent changes and the residuals of the model to quantify fluctuations over time. The cosine similarity (CS) served as a measure of uniformity of the relative changes of tendon force and stiffness. Muscle strength and tendon stiffness increased significantly in both groups (P < 0.01). However, the fluctuations of muscle strength were greater [A, 17 ± 7 (SD) N·m; C, 6 ± 2 N·m; P < 0.05] and the uniformity of changes of tendon force and stiffness was lower in athletes (CS A, -0.02 ± 0.5; C, 0.5 ± 0.4; P < 0.05). Further, athletes demonstrated greater maximum tendon strain (A, 7.6 ± 1.7%; C, 5.5 ± 0.9%; P < 0.05) and strain fluctuations (A, 0.9 ± 0.4; C, 0.3 ± 0.1; P < 0.05). We conclude that athletic training in adolescence affects the uniformity of muscle and tendon adaptation, which increases the demand on the tendon with potential implications for tendon injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app