JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Across-formant integration and speech intelligibility: Effects of acoustic source properties in the presence and absence of a contralateral interferer.

The role of source properties in across-formant integration was explored using three-formant (F1+F2+F3) analogues of natural sentences (targets). In experiment 1, F1+F3 were harmonic analogues (H1+H3) generated using a monotonous buzz source and second-order resonators; in experiment 2, F1+F3 were tonal analogues (T1+T3). F2 could take either form (H2 or T2). Target formants were always presented monaurally; the receiving ear was assigned randomly on each trial. In some conditions, only the target was present; in others, a competitor for F2 (F2C) was presented contralaterally. Buzz-excited or tonal competitors were created using the time-reversed frequency and amplitude contours of F2. Listeners must reject F2C to optimize keyword recognition. Whether or not a competitor was present, there was no effect of source mismatch between F1+F3 and F2. The impact of adding F2C was modest when it was tonal but large when it was harmonic, irrespective of whether F2C matched F1+F3. This pattern was maintained when harmonic and tonal counterparts were loudness-matched (experiment 3). Source type and competition, rather than acoustic similarity, governed the phonetic contribution of a formant. Contrary to earlier research using dichotic targets, requiring across-ear integration to optimize intelligibility, H2C was an equally effective informational masker for H2 as for T2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app