Add like
Add dislike
Add to saved papers

Effects of MBL-associated serine protease-2 (MASP-2) on liquefaction and ulceration in rabbit skin model of tuberculosis.

Tuberculosis is a chronic infectious disease, which caused by Mycobacterium tuberculosis. It typically affects the functions of the lung and causes high morbidity and mortality rates worldwide. The lectin pathway, one of the complement cascade systems, provides the primary line of defense against invading pathogens. However, what is the specific effection between tuberculosis and complement is unknown. Mannose-binding lectin (MBL), a recognition subunit, binds to arrays of carbohydrates on the surfaces of pathogens, which results in the activation of MBL-associated serine protease-2 to trigger a downstream reaction cascade of complement system. The effects of human MBL-associated serine protease-2 (hMASP-2) were assessed in a rabbit-skin model by intradermal injection of 5 × 10(6) viable BCG bacilli. The rAd-hMASP-2 accelerated the formation of liquefaction and healing of the granuloma lesions, reduced the bacteria loads of the skin nodules. The serum levels of IL-2 and IFN-γ were significantly increasing during the granuloma and liquefaction phases in the rAd-hMASP-2 group. This study suggests that hMASP-2 can induce a protective efficacy in BCG-infected rabbit skin models, which affects both the progress of lesions and the survival of the mycobacteria within them.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app