Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Empirically Fitted Parameters for Calculating pKa Values with Small Deviations from Experiments Using a Simple Computational Strategy.

Two empirically fitted parameters have been derived for 74 levels of theory. They allow fast and reliable pKa calculations using only the Gibbs energy difference between an acid and its conjugated base in aqueous solution (ΔGs(BA)). The parameters were obtained by least-squares fits of ΔGs(BA) vs experimental pKa values for phenols, carboxylic acids, and amines using training sets of 20 molecules for each chemical family. Test sets of 10 molecules per family-completely independent from the training set-were used to verify the reliability of the fitting parameters method. It was found that, except for MP2, deviations from experiments are lower than 0.5 pKa units. Moreover, mean unsigned errors lower than 0.35 pKa units were found for the 98.6%, 98.6%, and 94.6% of the tested levels of theory for phenols, carboxylic acids and amines, respectively. The parameters estimated here are expected to facilitate computationally based estimations of pKa values of species for which this magnitude is still unknown, with uncertainties similar to the experimental ones. However, the present study deals only with molecules of modest complexity, thus the reliability of the FP method for more complex systems remains to be tested.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app