Add like
Add dislike
Add to saved papers

Computational approaches in the rational design of improved carbonyl quenchers: focus on histidine containing dipeptides.

AIM: The inhibition of protein carbonylation can play therapeutic roles in several oxidative-based diseases and direct carbonyl quenching appears the most effective inhibition strategies. l-carnosine derivatives are effective and selective quenchers toward 4-hydroxy-2-nonenal even though their activity was never investigated in a fully comparable way.

RESULTS: The reported results revealed that anserine, homocarnosine and carnosinamide retain a remarkable quenching activity combined with a satisfactory selectivity. In silico analyses confirmed the key role of flexibility, lipophilicity and nucleophilicity parameters in rationalizing the measured reactivity.

CONCLUSION: This study confirms that in silico approaches can be successfully used in the rational design of improved carbonyl quenchers. Physicochemical and stereoelectronic descriptors appear really informative especially when explored by their corresponding property spaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app