Add like
Add dislike
Add to saved papers

Packaging and Prefusion Stabilization Separately and Additively Increase the Quantity and Quality of Respiratory Syncytial Virus (RSV)-Neutralizing Antibodies Induced by an RSV Fusion Protein Expressed by a Parainfluenza Virus Vector.

Journal of Virology 2016 November 2
Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced "high-quality" RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499-9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials.

IMPORTANCE: Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app