Add like
Add dislike
Add to saved papers

Preliminary Analysis of MicroRNAs Expression Profiling in MC3T3-E1 Cells Exposed to Fluoride.

Overexposure to fluoride from environmental sources can cause serious public health problems. Disrupted osteoblast function and impaired bone formation were found to be associated with excessive fluoride exposure. A massive analysis of microRNAs (miRNAs) was used to figure out the possible pathways in which fluoride affects osteoblast function. MC3T3-E1 cells were treated with 8 mg/L of fluorine for 7 days. Total RNA of cells was extracted, and their integrity and purity were tested. RNA samples were analyzed by using miRNA array, including miRNA labeling, hybridization, scanning, and expression data analysis to compare the profiling of miRNA expression between control and fluoride-treated group. Transcriptome analysis console and enrichment analysis calculated by miRSystem were used to predict target genes and collect miRNAs pathway maps. Forty-five upregulated and 31 downregulated miRNAs expression were found in the fluoride-treated group, and most of the verified miRNAs were mature. The KEGG pathway enrichment analysis searched out 36 pathways that scored more than 0.1. These pathways mainly included intracellular signaling, cytokines, metabolism, and cytoskeleton-related pathways. Among them, the Wnt, insulin, TGF-beta, hedgehog, VEGF, and notch pathways in osteoblasts were those mainly affected by fluoride treatment. These results have shown a number of higher level systemic pathways activated by overexposure of fluoride in osteoblastic cells and verified that fluoride affected the molecular crosstalk in the osteoblasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app