JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Neuropeptide-Induced Mast Cell Degranulation and Characterization of Signaling Modulation in Response to IgE Conditioning.

ACS Chemical Biology 2016 November 19
As tissue-resident immune cells, mast cells are frequently found in close proximity to afferent neurons and are subjected to immunoactive mediators secreted by these neurons, including substance P (SP) and calcitonin gene-related peptide (CGRP). Neurogenic inflammation is thought to play an important role in the pathophysiology of many diseases. Unraveling the cellular mechanisms at the interface between the immune response and the peripheral nervous system is important for understanding how these diseases arise and progress. In this work, mast cell degranulation following direct exposure to CGRP and SP was studied both at the bulk and single-cell levels to characterize the mouse peritoneal mast cell response to neuropeptides and compare this response to well-studied mast cell activation pathways. Results show that mast cells secrete fewer chemical messenger-filled granules with increased IgE preincubation concentrations. The biophysical characteristics of mast cell degranulation in response to SP and CGRP is in many ways similar to calcium ionophore-induced mast cell degranulation; however, neuropeptide-stimulated mast cells secrete reduced chemical messenger content per secretion event, resulting in an overall relative decrease in secreted chemical messengers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app