Add like
Add dislike
Add to saved papers

Spectroscopic and molecular dynamics characterization of glycyrrhizin membrane-modifying activity.

Glycyrrhizic acid (GA) is a triterpene glycoside extracted from licorice root. Due to its amphiphilicity GA is capable of forming complexes with a variety of hydrophobic molecules, substantially increasing their solubility. GA can enhance the therapeutic effects of various drugs. It was hypothesized that the increased bioavailability of the drug by GA is not only due to increased solubility, but also to enhancement of drug permeability through cell membranes. In this study the interaction of GA with POPC liposomes and model DOPC, POPC and DPPC bilayers was investigated by NMR with addition of shift reagents and MD simulations. This work helps to better understand the mechanism of enhanced drug bioavailability in the presence of GA. NMR and MD reveal that GA does penetrate into the lipid bilayer. NMR shows that GA changes the mobility of lipids. GA is predominantly located in the outer "half-layer" of the liposome and that the middle of the hydrophobic tails is the preferred location. GA freely passes through the bilayer surface to the inner part bringing a few water molecules. Also both approaches indicate pore formation in the presence of GA. The GA interaction with membranes is an additional aspect of the biological activity of GA-based drug delivery systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app